首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69447篇
  免费   7057篇
  国内免费   3827篇
电工技术   5262篇
技术理论   5篇
综合类   5360篇
化学工业   10233篇
金属工艺   4157篇
机械仪表   4311篇
建筑科学   6084篇
矿业工程   1873篇
能源动力   2044篇
轻工业   5032篇
水利工程   1500篇
石油天然气   3402篇
武器工业   610篇
无线电   8293篇
一般工业技术   8042篇
冶金工业   3040篇
原子能技术   1065篇
自动化技术   10018篇
  2024年   166篇
  2023年   1216篇
  2022年   2011篇
  2021年   3065篇
  2020年   2204篇
  2019年   1767篇
  2018年   2020篇
  2017年   2193篇
  2016年   1981篇
  2015年   2817篇
  2014年   3401篇
  2013年   4181篇
  2012年   4664篇
  2011年   4924篇
  2010年   4539篇
  2009年   4236篇
  2008年   4423篇
  2007年   4226篇
  2006年   4110篇
  2005年   3443篇
  2004年   2425篇
  2003年   2124篇
  2002年   2183篇
  2001年   1922篇
  2000年   1636篇
  1999年   1620篇
  1998年   1159篇
  1997年   1014篇
  1996年   983篇
  1995年   811篇
  1994年   669篇
  1993年   490篇
  1992年   441篇
  1991年   326篇
  1990年   216篇
  1989年   182篇
  1988年   158篇
  1987年   98篇
  1986年   66篇
  1985年   58篇
  1984年   39篇
  1983年   21篇
  1982年   40篇
  1981年   18篇
  1980年   20篇
  1979年   8篇
  1978年   2篇
  1964年   2篇
  1959年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
以智能反射面(intelligent reflecting surface,IRS)辅助的无线携能通信(simultaneous wireless information and power transfer,SWIPT)系统为背景,研究了该系统中基于能效优先的多天线发送端有源波束成形与IRS无源波束成形联合设计与优化方法。以最大化接收端的最小能效为优化目标,构造在发送端功率、接收端能量阈值、IRS相移等多约束下的非线性优化问题,用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。采用Dinkelbach算法转化目标函数,通过奇异值分解(singular value decomposition,SVD)和半定松弛(semi-definite relaxation,SDR)得到发送端有源波束成形向量。采用SDR得到IRS相移矩阵与反射波束成形向量。结果表明,该系统显著降低了系统能量收集(energy harvesting,EH)接收端的能量阈值。当系统总电路功耗为?15 dBm时,所提方案的用户能效为300 KB/J。当IRS反射阵源数与发送天线数均为最大值时,系统可达最大能效。  相似文献   
32.
Pathogens pose a serious challenge to environmental sanitation and a threat to public health.The frequent use of chemicals for sterilization in recent years has not only caused secondary damage to the environment but also increased pathogen resistance to drugs,which further threatens public health.To address this issue,the use of non-chemical antibacterial means has become a new trend for environmental disinfection.In this study,we developed red phosphorus nanoparticles(RPNPs),a safe and degradable photosensitive material with good photocatalytic and photothermal properties.The red phosphorus nanoparticles were prepared using a template method and ultrasonication.Under the irradiation of simulated sunlight for 20 min,the RPNPs exhibited an efficiency of 99.98%in killing Staphylococcus aureus due to their excellent photocatalytic and photothermal abilities.Transmission electron microscopy and ultraviolet–visible spectroscopy revealed that the RPNPs exhibited degradability within eight weeks.Both the RPNPs and their degradation products were nontoxic to fibroblast cells.Therefore,such RPNPs are expected to be used as a new type of low-cost,efficient,degradable,biocompatible,and eco-friendly photosensitive material for environmental disinfection.  相似文献   
33.
Electrocatalytic nitrogen reduction reaction (NRR) is a promising strategy for ammonia (NH3) production under ambient conditions. However, it is severely impeded by the challenging activation of the NN bond and the competing hydrogen evolution reaction (HER), which makes it crucial to design electrocatalysts rationally for efficient NRR. Herein, the rational design of bismuth (Bi) nanoparticles with different oxidation states embedded in carbon nanosheets (Bi@C) as efficient NRR electrocatalysts is reported. The NRR performance of Bi@C improves with the increase of Bi0/Bi3+ atomic ratios, indicating that the oxidation state of Bi plays a significant role in electrochemical ammonia synthesis. As a result, the Bi@C nanosheets annealed at 900  ° C with the optimal oxidation state of Bi demonstrate the best NRR performance with a high NH3 yield rate and remarkable Faradaic efficiency of 15.10  ± 0.43% at − 0.4 V versus RHE. Density functional theory calculations reveal that the effective modulation of the oxidation state of Bi can tune the p-filling of active Bi sites and strengthen adsorption of *NNH, which boost the potential-determining step and facilitate the electrocatalytic NRR under ambient conditions. This work may offer valuable insights into the rational material design by modulating oxidation states for efficient electrocatalysis.  相似文献   
34.
Bi2Sr2CaCu2Ox (Bi-2212) precursor powders were synthesized by the oxalate freeze drying (OFD) method. In comparison with the traditional method, the novel method could shorten the processing steps and thus improve the fabrication efficiency of precursor powder. The phase, microstructure and superconducting properties of Bi-2212 precursor powders and wires were characterized by X-ray diffraction, scanning electron microscopy and four-probe method, respectively. The thermal behavior, surface area and particle size of powders were also discussed. The results indicated that large surface area and small particle size might improve the reactivity and uniformity of powders. These properties were beneficial for the rapid and homogeneous formation of Bi-2212. High-purity crystallized Bi-2212 powders without Bi-2201 and alkaline-earth cuprates phases could be achieved. Furthermore, multi-filamentary Bi-2212 wires with OFD powders showed good microstructures without noticeable pores and large secondary particles. Therefore, high engineering critical current densities (Je) of 1619 A/mm2 and critical current densities (Jc) of 7039 A/mm2 were obtained in Bi-2212 wires at 4.2K, self field. It indicated that the oxalate freeze drying method would be a potential candidate for the mass production of high performance Bi-2212 wires.  相似文献   
35.
In this study, the intermediate rare-earth oxide Gd2O3 (Gd) was substituted in different amounts (x = 0.2–2 mol%) for the formulation of BaTi1-xGdxO3-x/2 (BTGx) dielectric materials. The effect of B-site substitution was confirmed by the additional Raman active A1g octahedral peak at ~835cm-1 strengthened at x ≥ 0.4 mol%. Additionally, properties of 0.9BTG0.007-0.1BA dielectric ceramics were analysed based on the influence of various processing methods as a function of sintering temperature. The focal samples were labelled Method-A (direct-mix) and Method-B (indirect-mix). As the sintering temperature (1075–1200 °C) increased, the 1 kHz response of the ε–T curves of Method-A samples transformed from a single peak to broad-narrow double peaks of high dielectric loss tangent (tan δ). Nonetheless, samples of Method-B possessed a clearly defined transmission electron microscopy (TEM) core-shell structure, flattened double-peak ε-T curves, optimised dielectric properties (ε = ~1563–1851 and tan δ < 1.5% at room temperature), and a wide-ranging temperature behaviour that meets the X8R dielectric standards (ΔC/C25°C < ±15%). The maximum dielectric breakdown strength of Method-B samples reached ~131 kVcm, while the energy storage density was ~0.726 J/cm3 at a maximum efficiency of ~80% at 1100 °C. Thus, exhibiting good potentials for balancing temperature stability with energy storage applications.  相似文献   
36.
Cerium-doped yttrium aluminum garnet (Y3Al5O12:Ce, YAG:Ce) was prepared using a sol-gel method and then fired for CO2 laser post-treatments. Phase transformations and formation of impurities were not observed in YAG:Ce after CO2 laser sintering. The shift of the diffraction peak and the appearance of another Raman peak indicate a more homogeneous distribution of Ce activators and enhanced crystallinity in laser-sintered YAG hosts. Larger spheres (100–200 μm) with tiny crystallites (<10 μm) were observed on the smoother surface in the laser-sintered YAG:Ce, unlike the irregular, porous, and layered powders in the sol-gel-derived YAG:Ce (1–100 μm). Photoluminescence (PL) measurements revealed an emission increase of 180% and a red shift of the emission peak for the laser-sintered YAG:Ce powders compared with the sol-gel-derived powders. Both have comparable thermal PL quenching behavior; however, the YAG:Ce powders with CO2 laser treatment exhibited a PL efficiency improvement of approximately 4%.  相似文献   
37.
Chemistry and Technology of Fuels and Oils - In this paper, the authors have developed a new device and method for measuring the efficiency of spontaneous imbibition and displacement in a low...  相似文献   
38.
Emerging graphene/organic phototransistors are eye-catching technologies owing to their unique merits including easy/low-cost fabrication, temperature independent, and achieving various functions. However, their development in the near-infrared (NIR) region is experiencing a bottleneck of inferior sensitivity due to low exciton dissociation efficiency and inefficient charge extraction rate. Here, a novel-design solution-processed graphene/organic NIR phototransistor is reported, that is, creatively introducing electron extraction layer of ZnO on graphene channel and employing organic ternary bulk heterojunction as photosensitive layer, successfully breaking that bottleneck. The phototransistor exhibits a high responsivity of 6.1 × 106 A W−1, a superior detectivity of 2.4 × 1013 Jones, and a remarkable minimum detection power of 1.75 nW cm−2 under 850 nm radiation. Considering its excellent NIR detection performance, a noncontact transmission-type pulse monitoring is carried out with no external circuit support, from which human pulse signal and heart rate can be displayed in real time. The phototransistor, interestingly, can be switched into a photomemory function with a retention time of 1000 s in the atmosphere through a gate voltage of −20 V. The design takes the characteristics of graphene/organic phototransistors to a higher level, beyond the limit of sensitivity, and opens up a novel approach for developing multifunction devices.  相似文献   
39.
Ge2Sb2Tes is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However,the cubic-hexagonal optical contrast is negligible,only the amorphous-cubic phase transition of Ge2Sb2Te5 is available.This limits the optical switching states of traditional active dis-plays and absorbers to two.We find that increasing structural disorder difference of cubic-hexagonal can increase optical contrast close to the level of amorphous-cubic.Therefore,an amorphous-cubic-hexagonal phase transition with high optical contrast is realized.Using this phase transition,we have developed display and absorber with three distinct switching states,improving the switching perfor-mance by 50%.Through the combination of first-principle calculations and experiments,we reveal that the key to increasing structural disorder difference of amorphous,cubic and hexagonal phases is to intro-duce small interstitial impurities(like N)in Ge2Sb2Tes,rather than large substitutional impurities(like Ag)previously thought.This is explained by the formation energy and lattice distortion.Based on the impurity atomic radius,interstitial site radius and formation energy,C and B are also potential suit-able impurities.In addition,introducing interstitial impurities into phase-change materials with van der Waals gaps in stable phase such as GeSb4Te7,GeSb2Te4,Ge3Sb2Te6,Sb2Te3 will produce high optical con-trast amorphous-metastable-stable phase transition.This research not only reveals the important role of interstitial impurities in increasing the optical contrast between metastable-stable phases,but also proposes varieties of candidate matrices and impurities.This provides new phase-change materials and design methods for non-volatile optical devices with multi-switching states.  相似文献   
40.
Phase change memory (PCM) is an emerging non-volatile data storage technology concerned by the semiconductor industry. To improve the performances, previous efforts have mainly focused on partially replacing or doping elements in the flagship Ge-Sb-Te (GST) alloy based on experimental “trial-and-error” methods. Here, the current largest scale PCM materials searching is reported, starting with 124 515 candidate materials, using a rational high-throughput screening strategy consisting of criteria related to PCM characteristics. In the results, there are 158 candidates screened for PCM materials, of which ≈68% are not employed. By further analyses, including cohesive energy, bond angle analyses, and Born effective charge, there are 52 materials with properties similar to the GST system, including Ge2Bi2Te5, GeAs4Te7, GeAs2Te4, so on and other candidates that have not been reported, such as TlBiTe2, TlSbTe2, CdPb3Se4, etc. Compared with GST, materials with close cohesive energy include AgBiTe2, TlSbTe2, As2Te3, TlBiTe2, etc., indicating possible low power consumption. Through further melt-quenching molecular dynamic calculation and structural/electronic analyses, Ge2Bi2Te5, CdPb3Se4, MnBi2Te4, and TlBiTe2 are found suitable for optical/electrical PCM applications, which further verifies the effectiveness of this strategy. The present study will accelerate the exploration and development of advanced PCM materials for current and future big-data applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号